Upper minus total domination in small-degree regular graphs
نویسندگان
چکیده
A function f :V (G) → {−1, 0, 1} defined on the vertices of a graph G is a minus total dominating function (MTDF) if the sum of its function values over any open neighborhood is at least one. An MTDF f is minimal if there does not exist an MTDF g:V (G) → {−1, 0, 1}, f = g, for which g(v) f (v) for every v ∈ V (G). The weight of an MTDF is the sum of its function values over all vertices. The minus total domination number of G is the minimum weight of an MTDF on G, while the upper minus domination number of G is the maximum weight of a minimal MTDF on G. In this paper we present upper bounds on the upper minus total domination number of a cubic graph and a 4-regular graph and characterize the regular graphs attaining these upper bounds. © 2007 Elsevier B.V. All rights reserved.
منابع مشابه
Upper minus Total Domination Number of 6-regular Graph
Let Γ−t (G) be upper minus total domination number of G. In this paper, We establish an upper bound of the upper minus total domination number of a 6-regular graph G and characterize the extremal graphs attaining the bound. Thus, we partially answer an open problem by Yan, Yang and Shan. AMS Subject Classification: 05C69
متن کاملTwin minus domination in directed graphs
Let $D=(V,A)$ be a finite simple directed graph. A function$f:Vlongrightarrow {-1,0,1}$ is called a twin minus dominatingfunction (TMDF) if $f(N^-[v])ge 1$ and $f(N^+[v])ge 1$ for eachvertex $vin V$. The twin minus domination number of $D$ is$gamma_{-}^*(D)=min{w(f)mid f mbox{ is a TMDF of } D}$. Inthis paper, we initiate the study of twin minus domination numbersin digraphs and present some lo...
متن کاملThe minus k-domination numbers in graphs
For any integer , a minus k-dominating function is afunction f : V (G) {-1,0, 1} satisfying w) for every vertex v, where N(v) ={u V(G) | uv E(G)} and N[v] =N(v)cup {v}. The minimum of the values of v), taken over all minusk-dominating functions f, is called the minus k-dominationnumber and is denoted by $gamma_k^-(G)$ . In this paper, we introduce the study of minu...
متن کاملOn the total k-domination number of graphs
Let k be a positive integer and let G = (V,E) be a simple graph. The k-tuple domination number γ×k(G) of G is the minimum cardinality of a k-tuple dominating set S, a set that for every vertex v ∈ V , |NG[v]∩S| ≥ k. Also the total k-domination number γ×k,t(G) of G is the minimum cardinality of a total k -dominating set S, a set that for every vertex v ∈ V , |NG(v)∩S| ≥ k. The k-transversal numb...
متن کاملGlobal minus Domination in Graphs
A function f : V (G) → {−1, 0, 1} is a minus dominating function if for every vertex v ∈ V (G), ∑ u∈N [v] f(u) ≥ 1. A minus dominating function f of G is called a global minus dominating function if f is also a minus dominating function of the complement G of G. The global minus domination number γ− g (G) of G is defined as γ − g (G) = min{ ∑ v∈V (G) f(v) | f is a global minus dominating functi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 307 شماره
صفحات -
تاریخ انتشار 2007